Chapter 4

Shorthand for operations:
writing your own functions

As a general rule in computer science, if you write almost the exact same thing over and
over, you're doing something wrong. For example, we've already seen how to define a
variable so we don’t have to keep finding or building the exact same image over and over.
In this chapter, we’ll learn to write programs as a way to avoid writing similar expressions
over and over.

4.1 Defining your own functions

Worked Exercise 4.1.1 Write a Racket expression that produces a picture of a textbook,
side by side with its right-to-left reflection:

L L
~ T i

o1

52 CHAPTER 4. WRITING FUNCTIONS

Solution: Each of these should be routine by now: you can get the results by typing

(beside

(beside E=¥ (flip-horizontal ¥))
(beside bloch (flip-horizontal bloch))

(the last one assumes that you've defined a variable bloch to hold a picture of me). |

Obviously, these are all very similar expressions: they all match the pattern
(beside something (flip-horizontal something))

with various different pictures plugged in as something. Now imagine you were working
on a project in which you needed a lot of different pictures, each side by side with its right-
to-left reflection. You could type basically this same expression over and over again, but
it would be tedious, repetitive, and error-prone. Frankly, human beings don’t do tedious,
repetitive jobs very well without making mistakes. But computers do! It makes sense,
therefore, to use the computer to automate this tedious, repetitive process, so we can
concentrate our human abilities on more interesting tasks like picking the right pictures
for our project.

The task can be broken down into two parts: the part that’s the same every time,
1.e.

(beside something (flip-horizontal something))

and the part that’s different every time, i.e. what specific picture is plugged in as
something. We’ll teach the computer that repeated pattern, and whenever we want to
use it, we’ll simply provide the right picture to plug in for something.

We need to provide a name for our new pattern, so we can refer to it by name
and the computer will know which pattern we’re talking about. Let’s use the name
mirror-image. Type the following in the Definitions pane (after the usual (require
picturing-programs)):

(define (mirror-image something)

(beside something (flip-horizontal something)))

and click the “Run” button.
Now to get a mirror-image effect on various pictures, we can just type

(mirror-image

(mirror-image

(mirror-image bloch)

(mirror-image (flip-vertical bloch))
etc.

We've defined a new function named mirror-image, and taught the computer that
whenever you call that function on an image, it should match up the image you provided
with the “place-holder”’ word something, and act as though you had typed (beside, the

4.2. WHAT’S IN A DEFINITION? 53

image, (flip-horizontal, the same image again, and two right-parentheses. From now
until you quit DrRacket, it will remember this pattern and use it whenever you call the
mirror-image function. Now that the computer “knows” how to do this, we never have
to worry about it again ourselves. We’ve taught the computer a new trick by combining
things it already “knows” how to do; in other words, we’'ve written a program.

By the way, there’s nothing magical about the name something; we could equally well
have said x, or picture, or horse-chestnut, as long as we spell the name the exact same
way in all three places it appears. The name is just a “place-holder” (the technical word
is parameter), to be matched up with whatever specific picture is provided when a user
calls the function. The most sensible of these names would be picture, as that’s what it’s
supposed to represent, so a better definition would be

(define (mirror-image picture)
(beside picture (flip-horizontal picture)))

Practice Exercise 4.1.2 Type the above definition (the version with the parameter name
picture) into the Definitions pane of DrRacket, along with definitions of the variables
book, calendar, and bloch. Click “Run”, then type the examples

(mirror-image book)

(mirror-image calendar)

(mirror-image bloch)

(mirror-image (flip-vertical bloch))

into the Interactions pane. After each one, hit ENTER/RETURN and you should see
the correct result.

4.2 What’s in a definition?

4.2.1 Terminology

The definition above is actually made up of several parts. The
(define (mirror-image picture)
part, which I've put on the first line, is called the function header, while the
(beside picture (flip-horizontal picture)))

part, which I've put on the second line, is called the function body.

The function header is always made up of a left-parenthesis, the word define, a left-
parenthesis, a function name (which must be an identifier that’s not already defined,
just like when you define a variable), one or more parameter names (identifiers), and a
right-parenthesis.

The function body is simply an expression (plus a right-parenthesis at the end to match
the one at the beginning of the header), in which the parameter names may appear as
though they were defined variables. Indeed, if you have a parameter name in the header
that doesn’t appear inside the function body, you're probably doing something wrong.

4.2.2 Lines and white space

In each of the above examples, I've written the definition over two lines. You could write
it all on one line:

(define(mirror-image picture) (beside picture(flip-horizontal picture)))

Or you could break it up over many lines, with as many extra blanks as you wish:

54 CHAPTER 4. WRITING FUNCTIONS

(
define (
mirror-image

picture
) (beside
picture (
flip-horizontal
picture)
)
)

Racket doesn’t care: both of these will work equally well. However, neither of them is
particularly easy for a human being to read. For the sake of human readers, most Racket
programmers put the function header on one line, then hit ENTER/RETURN and put
the function body on one more subsequent lines, depending on how long and complicated
it is:
(define (mirror-image picture)
(beside picture (flip-horizontal picture)))
or
(define (mirror-image picture)
(beside picture
(flip-horizontal picture)))

Also notice that if you write a definition over more than one line, DrRacket will auto-
matically indent each line depending on how many parentheses it’s inside; this makes it
easier for the human reader to understand what’s going on. If you have a badly-indented
definition (like the one above for mirror-image spread over eleven lines!), you can select
it all with your mouse, then choose “Reindent All” from the Racket menu in DrRacket,
and DrRacket will clean up the indentation (but not the line breaks or the extra spaces
in the middles of lines).

Exercise 4.2.1 Define a function named vert-mirror-image which, given an image,
produces that image above its top-to-bottom reflection. As before, type your definition into
the Definitions pane, after the definitions already there. Put the function header on one
line, and the function body on the next line or two.

Click “Run”, then test your function by trying it on various images, such as book,
calendar, and bloch, and checking that the results are what you expected.

Exercise 4.2.2 Define a function named four-square which, given an image, produces

a two-by-two square of copies of it, e.g. . . Put the function
header on one line, and the function body on the next line or two. Test your function by
trying it on various images and checking that the results are what you expected.

4.3. PARAMETERS AND ARGUMENTS 55

Worked Exercise 4.2.3 Define a function named counterchange which, given two im-
ages, produces a two-by-two square with the first image in top-left and bottom-right posi-
tions, and the second image in top-right and bottom-left positions, e.g.

=1
%

Solution: The only new feature of this problem is that the function takes in two images
rather than one. To keep them straight, we need to have two different parameter names,
e.g. imagel and image2. The definition then looks like

TEL

(define (counterchange imagel image2)
(above (beside imagel image?2)
(beside image2 imagel)))

Note that as usual, we’ve put the function header on one line and the function body on
another — except that this function body is long enough and complicated enough that
we split it across two lines. DrRacket’s automatic indentation lines up the two calls to
beside so the reader can easily see that they are both used as arguments to above.

Now we need to test the function. With the above definition in the Definitions pane,
we hit the “Run” button, then type (in the Interactions pane)

ur
ir x
'

(counterchange

and get the result above. For another example, try

(counterchange == (flip-horizontal &))

Is the result what you expected? |j

Exercise 4.2.4 Define a function named surround which, given two images, produces a
picture with the second, first, and second side by side, i.e. the first image is “surrounded”
on left and right by the second image. Follow the usual convention for code layout, and
test your function on at least two different examples.

4.3 Parameters and arguments

Some people use the words argument and parameter interchangeably. But there is a
subtle, yet important, difference. An argument is a specific value in a function call, while
a parameter is a “place-holder” introduced in the header part of a function definition. An
argument may look like a number, string, image, variable, or more complex expression,
while a parameter always looks like just a variable. For example,

56 CHAPTER 4. WRITING FUNCTIONS

param of mirror-image
(define (mirror-image |picture ‘)
param of mirror-image
(beside (picture ‘
param of mirror-image

(flip-horizontal |picture ‘))
arg of mirror-image
(mirror-image |book D

The name picture is introduced in the “header” part of the definition of mirror-image,
so it is a parameter of mirror-image. That same parameter is used two other times in
the definition of mirror-image. The name book is used as an argument in a call of
mirror-image.

For that matter, mirror-image is defined by calling two other functions, which have
arguments of their own:

(define (mirror-image picture)

arg of beside
(beside
arg of beside
arg of flip-horizontal

(flip-horizontal ’picture ‘)))

arg of mirror-image
(mirror-image |book ‘)

Note that inside the function definition, the word picture can be thought of both
as a parameter to mirror-image (because it appeared in the header of mirror-image’s
definition), and also as an argument to beside and flip-horizontal (because it appears
in calls to those functions).

To put it another way, an “argument” and a “parameter” both represent information
passed into a function from its caller, but the “argument” is that information as seen
from the caller’s point of view, and the “parameter” is the information as seen by the
function being called.

Exercise 4.3.1 Consider the following Racket code:
(define (mystery x y)

(above (flip-horizontal x) y))
(mystery calendar book)

(mystery book calendar)

What words are used as parameters to which functions? What words are used as argu-
ments to which functions?

Exercise 4.3.2 Consider your solution and test cases for Exercise 4.2.1, 4.2.2, or 4.2.4.
What words are used as parameters to which functions? What words (and expressions)
are used as arguments to which functions?

4.4 Parameters, arguments, and the Stepper

To get a clearer picture of what’s going on, type the definitions of bloch and mirror-image,
along with several examples of the latter, into the Definitions pane:

4.4. PARAMETERS, ARGUMENTS, AND THE STEPPER 57

(define bloch
(define (mirror-image picture)
(beside picture (flip-horizontal picture)))

o

(mirror-image &=)

(mirror-image bloch)

(mirror-image (flip-vertical bloch))
Now, instead of clicking “Run”, click the “Step” button. It’ll skip through the definitions,
and start stepping at the expression

(mirror-image

(mirror-image

which expands to

(beside

This is because Racket matched up the argument with the parameter
picture, and everywhere inside the function definition that the parameter picture ap-
peared, replaced it with that specific picture. The next few steps in the Stepper will

is replaced by

original picture to produce the result

58 CHAPTER 4. WRITING FUNCTIONS

Step through the remaining examples, and make sure you understand what is being
replaced with what, and why, at each step.

Practice Exercise 4.4.1 Consider the Racket code from Ezxercise 4.3.1:

(define (mystery x y)

(above (flip-horizontal x) y))
(mystery calendar book)
(mystery book calendar)

In each of the two calls to mystery, tell which argument is matched with which parameter,
and write down (without using DrRacket) the sequence of steps of expansion that the
Stepper would do. Type this code into DrRacket’s Definitions pane, hit “Step” several
times, and see whether you were right.

Practice Exercise 4.4.2 Repeat the previous ezxercise, replacing the mystery function
with your solution to Ezxercise 4.2.1, 4.2.2, or 4.2.4.

4.5 Testing a Function Definition

As this course goes on, you'll need to define hundreds of functions; defining a new function
is one of the most common tasks for a programmer. But as you may have already found
out, it’s easy to make a mistake in defining a function. Before we can consider our task
finished, we need to test the function for correctness.

Program testing can be an unpleasant job, as it often gives you the bad news that
your program doesn’t work. But it’s much better for you to discover that your program
doesn’t work, than for your teacher or customer to make the discovery and penalize you
for it. The worst thing that can happen is that we think our program is correct, but fail
to spot an error that leads to somebody else getting wrong answers, which (in the real
world) can cause airplanes or spaceships to crash, bridges to fall down, medical equipment
to kill patients, etc.

So we owe it to ourselves to try to break our own programs. The harder we've tried
without managing to break a program, the more confidence we have in turning it over to
a teacher or customer. The more devious and malicious we are towards our own programs
before releasing them, the less likely they are to be released with errors.

Recall from Chapter 1 that a function is considered correct only if it produces correct
answers for all possible inputs. However, for a function like mirror-image, there are
infinitely many possible pictures we could call it on; we can’t possibly test it on every
one. Fortunately, the function is simple enough that picking two or three different pictures
is probably enough: it’s unlikely to get those right without also getting everything else
right.

4.5.1 Testing with string descriptions

One way I often test a program is by writing several calls to the function in the Definitions
pane, after the function definition itself. Each call is followed by a description, in quotation
marks, of what the answer should have been. This way, when I hit “Run”, DrRacket not
only learns the function definition but shows the results of each call, followed by what it
should have been. For example, the Definitions pane might look like (in part)

4.5. TESTING A FUNCTION DEFINITION 59

(define (mirror-image picture)
(beside picture (flip-horizontal picture)))
(mirror-image book)
"should be two mirror-image books side by side, the left one with
a question mark, the right one with a backwards question mark"
(mirror-image bloch)
"should be two mirror-image pictures of me side by side,
faces turned slightly away from one another"

Hit “Run”, and you’ll get an Interactions pane looking like

"should be two mirror-image books side by side, the left one with
a question mark, the right one with a backwards question mark"

"should be two mirror-image pictures of me side by side,
faces turned slightly away from one another"

Since both actual answers match the descriptions of what they should be, we would
tentatively conclude that the program works correctly.

Note that we’ve used strings to describe the “right answers”. This works because
when you type a quoted string by itself (not as an argument to a function), the value of
that expression is simply the string itself.

Now suppose we had written a program incorrectly, for example

(define (vert-mirror-image picture)
(above picture (flip-horizontal picture)))
(vert-mirror-image book)
"should be two books, one right side up with a question mark,
above another one upside down with an upside-down question mark"

Hit “Run”, and the result will be

"should be two books, one right side up with a question mark,
above another one upside down with an upside-down question mark"

60 CHAPTER 4. WRITING FUNCTIONS

The answer the function actually produced doesn’t match what we said it should pro-
duce, so something is wrong. Looking through the function definition (possibly with the
aid of the Stepper), we would soon realize that the picture was being reflected horizontally,
rather than vertically. We would correct this, hit “Run” again, and get

"should be two books, one right side up with a question mark,
above another one upside down with an upside-down question mark"

This time the actual answer does match the “right” answer, so things look good. One
test case, however, is almost never enough to build real confidence in a function; choose
at least two or three test cases.

Not all test cases are created equal. For example, if instead of using the picture of a
book, we had written

(vert-mirror-image (rectangle 30 20 "solid" "blue"))
"should be a 30x20 solid blue rectangle, above another one upside down"

and then clicked “Run”, the actual answer would have looked correct, even without
finding and fixing the error, because a rectangle flipped upside down looks just like a
rectangle flipped left-to-right (or not flipped at all). In other words, there would be an
error in the program, but we wouldn’t know about it because we weren’t nasty enough
to our program. Choose test cases that are likely to reveal errors.

Occasionally, you’ll get an actual result that doesn’t match what it “should be”, and
the function is actually right; your “should be” answer was wrong. For example, suppose
you had defined vert-mirror-image correctly but written the test case

(vert-mirror-image calendar)
"should be a calendar, above another calendar flipped left-to-right"

When you hit “Run”, you’ll get an image that doesn’t match the description of what
it “should be”, but this time it’s because your “right answer” was wrong. That doesn’t
mean everything is OK: a correct program which looks wrong is almost as bad as an
incorrect program which looks right. But this situation is at least easy to fix: once you're
sure the program is right, just correct the “right answer”. This doesn’t happen often:
when the actual answer doesn’t match your “right answer”, it’s much more likely that
the program is wrong. But keep this other possibility in mind.

4.5.2 Common beginner mistakes

T've frequently had students write “test cases” like the following (I've highlighted them
for visibility):

4.5. TESTING A FUNCTION DEFINITION 61

(define (mirror-image picture)
(beside picture (flip-horizontal picture)))
book
"should be two mirror-image books side by side,
the left one with a question mark, the right one
with a backwards question mark"
bloch
"should be two mirror-image pictures of me side by side,
faces turned slightly away from one another"

What’s wrong with this? Well, when you type book or bloch by itself, DrRacket has
no idea what you want to do with that picture. DrRacket certainly can’t guess that you
want to look at its mirror image (as opposed to rotating it clockwise, or putting it above
itself, or thousands of other things DrRacket might be able to do with it). The fact that
you've recently defined the mirror-image function does not mean that the mirror-image
function will be called automatically; if you want to use a particular function, you have
to call it by name. Just saying book will give you a picture of a book, no matter what
functions you've defined.

Another common mistake in writing test cases:

(define (mirror-image picture)
(beside picture (flip-horizontal picture)))
(beside book (flip-horizontal book))
"should be two mirror-image books side by side,
the left one with a question mark, the right one
with a backwards question mark"

(beside bloch (flip-horizontal bloch))

"should be two mirror-image pictures of me side by side,
faces turned slightly away from one another"

There are two things wrong with this. First, it misses the point of defining a new
function: once you've defined a function, you shouldn’t have to think about (or repeat)
its body ever again. Second and more seriously, it doesn’t test the function you defined.
These examples test whether beside and flip-horizontal work correctly, but since they
never actually use mirror-image itself, they don’t tell whether or not it works correctly.
If the mirror-image function had been written incorrectly (e.g. using above rather than
beside), these test cases wouldn’t show us that anything was wrong.

Many of my students in the past have balked at describing “what the right answer
should be”; they would rather type in the test case, run it, see what the answer is, then
(since the mean old professor insists on test cases) describe this answer and say that’s
what it “should be”. Don’t do this! These students will never discover any errors in
their programs, because they’re assuming the program is correct. They have completely
missed the point of testing (and lost a lot of points on their homework grades, to boot!)

4.5.3 The check-expect function

If you've got a lot of test cases for a particular function, or if you have a lot of functions in
the Definitions pane, it can be a lot of work to look through all the answers and compare
them with their descriptions. DrRacket comes with a function named check-expect that
automates this process: no matter how many test cases you have in the Definitions pane,
it tells you instantly how many of the actual answers matched what you said they “should
be”, and which of them didn’t.

62 CHAPTER 4. WRITING FUNCTIONS

Unfortunately, check-expect isn’t smart enough to understand an English-language
description of the right answer, so to take advantage of it, you have to build the exact
right answer for each specific test case.

For example, consider the vert-mirror-image function from before. To test it using
check-expect, we would replace the test case

(vert-mirror-image book)
"should be two books, one right side up with a question mark,
above one upside down with an upside-down question mark"
with
(check-expect (vert-mirror-image book)
(above book (flip-vertical book)))

In addition, let’s use the “bad test case” from section 4.5.1:
(check-expect
(vert-mirror-image (rectangle 30 20 "solid" "blue"))
(above (rectangle 30 20 "solid" "blue")
(flip-vertical (rectangle 30 20 "solid" "blue")))

Practice Exercise 4.5.1 Type a correct definition of vert-mirror-image into the Dr-
Racket definitions pane, followed by the above check-ezpect lines. Click “Run” and see
what happens.

Now change the definition to be incorrect — for example, use flip-horizontal in-
stead of flip-vertical — but leave the check-expect the same. Click “Run” and see
what happens.

By the way, check-expect is “smart” in another way: you can put test cases using
check-expect ahead of the definition and DrRacket won’t complain that the function
isn’t defined yet. This doesn’t work with “should be”-style test cases.

4.6 A new syntax rule

Why is something like

(define (mirror-image picture)
(beside picture (flip-horizontal picture)))

legal Racket? Well, based on the syntax rules you’ve seen so far, it isn’t: there is no way
to draw a box diagram for it, justifying each box with one of the rules

Syntax Rule 1 Any picture, number, or string is a legal expression; its value is itself.

Syntax Rule 2 A left-parenthesis followed by a function name, one or more legal expres-
sions, and a right parenthesis, is a legal expression; its value is what you get by applying
the named function to the values of the smaller expressions inside it.

Syntax Rule 3 Any identifier, if already defined, is a legal expression.

Syntax Rule 4 A left-parenthesis followed by the word define, a previously-undefined
identifier, a legal expression, and a right-parenthesis is a legal expression. It has no
“value”, but the side effect of defining the variable to stand for the value of the expression.

To define new functions, as we’ve just done, we need a new syntax rule:

4.6. A NEW SYNTAX RULE 63

Syntax Rule 5 A left parenthesis followed by the word define, a left parenthesis, a
previously-undefined identifier, one or more identifiers, a right parenthesis, a legal ex-
pression, and another right parenthesis is a legal expression. Think of it as anything
matching the pattern

(define (new-tdentifier identifier ...) exzpression)

This sort of expression has no “value”, but the side effect of defining a new function
whose name is the new-identifier. Note that the parameter names from the function header
can appear inside the function body as though they were defined variables.

Notice the difference between Syntax Rules 4 and 5: a variable definition looks like
(define wariable-name ...)

whereas a function definition looks like
(define (function-name parameter-names) ...)

Racket can tell which one you mean by whether there’s a left parenthesis after the define.

Worked Exercise 4.6.1 Draw a box diagram to prove that
(define (two-copies picture)
(beside picture picture))

is a legal expression. Assume that two-copies is not already defined.

Solution: Since picture is one of the identifiers in the function header, it can appear
inside the function body as if it were a defined variable. So the last two occurrences of
the word picture are legal expressions, by Rule 3:

(define (two-copies picture)

(beside ’ picture‘ ’ picture‘))

Then the whole call to beside is a legal expression, by Rule 2:

(define (two-copies picture)
2

(beside ’ picture‘ ’3picture‘)

~

Finally, by Rule 5, we can recognize the whole thing as a legal expression defining a new
gunction:

(define (two-copies picture)
2

(beside ’ picture‘ ’3pi cture‘)

~

Exercise 4.6.2 Draw a box diagram to prove that
(define (mirror-image picture)
(beside picture (flip-horizontal picture)))
is a legal expression. Assume that mirror-image is not already defined.

Exercise 4.6.3 Draw a box diagram to prove that your solution to Exercise 4.2.1, 4.2.2,
or 4.2.4 is a legal expression.

64 CHAPTER 4. WRITING FUNCTIONS

4.7 Scope and visibility

You may have already noticed (perhaps by accident) that two different functions can have
parameters with the same name (which I’ve highlighted), e.g.

(define (horiz-mirror-image pic)
(beside pic (flip-horizontal pic)))
(define (vert-mirror-image pic)

(above pic (flip-vertical pic)))

In fact, there could even be a global variable by the same name:

(define pic

(define (horiz-mirror-image pic)
(beside pic (flip-horizontal pic)))
(define (vert-mirror-image pic)
(above pic (flip-vertical pic)))

(rotate-cw pic)
(horiz-mirror-image pic)

(horiz-mirror-image (rotate-cw pic))

There’s nothing wrong with this: when a parameter name appears in a function header,
it “hides” any other definition of that name that might already exist, until the end of the
function definition.

By way of analogy, when I'm at home, the name “Deborah” always refers to my wife,
even though there are lots of other Deborahs in the world. If I meant one of the other Deb-
orahs, I'd have to specify a last name, e.g. the author Deborah Tannen; the name “Deb-
orah” by itself still means my wife. Similarly, inside the body of vert-mirror-image,
the word pic always refers to the parameter pic introduced in its header, regardless of
whether there are other things named pic defined elsewhere.

Furthermore, there is no way whatsoever to refer to that parameter from outside the
function; the parameter simply doesn’t exist outside the function. (I suppose the best
analogy to this would be if my wife never left the house, and I kept her existence a secret
from the rest of the world....) The world outside the definition of horiz-mirror-image
neither knows nor cares what parameter name it uses internally. Another result of this
is that you can call horiz-mirror-image with an argument that happens to be named
pic, or with some other argument; it makes no difference whatsoever.

Of course, if you prefer to use different parameter names in each function, there’s

4.8. AN ANALOGY FROM ENGLISH 65

(define pic

(define (horiz-mirror-image pic2)
(beside pic2 (flip-horizontal pic2)))
(define (vert-mirror-image pic3)

(above pic3 (flip-vertical pic3)))

(rotate-cw pic)
(horiz-mirror-image pic)
(horiz-mirror-image (rotate-cw pic))

but it’s an unnecessary complication. When choosing parameter names, I choose what-
ever makes the most sense inside this function, without worrying about whether there’s
something else with the same name somewhere else.

Computer scientists refer to the part of the program in which a variable is visible
as that variable’s scope. In the above example, the global variable pic’s scope is “ev-
erywhere, until you quit DrRacket”; the parameter pic2’s scope is “inside the definition
of horiz-mirror-image”, and the parameter pic3’s scope is “inside the definition of
vert-mirror-image”.

4.8 An analogy from English

We’ve encountered a number of new concepts in the past few chapters: expression, func-
tion, argument, variable, data type, etc. Some people may have an easier time understand-
ing these terms by analogy to English.

4.8.1 Proper nouns and literals

In English (and most other natural languages), one can name an individual person, place,
or thing with a proper noun, e.g. “Joe Smith”, “New York”, “Harvard University”,
“Rover”, etc. The analogous concept in Racket (and most other programming languages)

E
is a literal, e.g. a picture like , a number like 7, or a string like "hello there".

All of these represent specific pieces of information, which you can tell simply by looking
at them.

4.8.2 Pronouns and variables

English also has pronouns like “he”, “she”, “it”, etc.: words that represent an individual
person, place, or thing, but only in context. If I say “He is very tall,” you know that
I'm talking about a person, but you don’t know which person unless you’ve heard the
previous sentence or two.

Analogously, in Racket and other programming languages, we have wvariables that
represent an individual piece of information, but just by looking at the variable in isolation

66 CHAPTER 4. WRITING FUNCTIONS

you can’t tell which piece of information; you need to see the variable’s definition. For
example, if I said (beside imagel image2), you could tell that I was putting two images
side by side, but without seeing the definitions of the variables imagel and image2, you
would have no idea what images I was putting beside one another. Parameters inside a
function definition are just like variables in this sense.

4.8.3 Improper nouns and data types

English also has improper nouns: words describing a category of things rather than an
individual thing, like “person”, “state”, “school”, and “dog”. The analogous concept in
Racket and other programming languages is data type: the three data types we’ve seen
so far are “image”, “number”, and “string”.

4.8.4 Verbs and functions

English also has verbs: words that represent actions that take place, at a particular time,
often to one or more particular objects. For example, “Sam kissed Angela last night”
includes the verb “kissed”, involving the two objects “Sam” and “Angela” (both of which
are proper nouns, as discussed above), and the action took place at a particular time (last
night).

The closest analogue to verbs in Racket and other programming languages is func-
tions: when you call a function on particular arguments, it performs an action on those
arguments. (By contrast, literals, variables, and data types aren’t so bound to time: they
just are, rather than doing anything at a particular time.) For example, when you type
the expression

(above == —F)

into the Interactions pane (or type it into Definitions and hit “Run”), the function above
operates on the two specified pictures at that particular time and creates a new picture
including both of them.

4.8.5 Noun phrases and expressions

In English, one can often string several words together into a noun phrase, like “my best
friend’s aunt’s house,” which represents a specific thing, like a proper noun or a pronoun
but which requires a little more work to identify. In this case, it takes three steps: Who
is my best friend? Who is that person’s aunt? Where is that person’s house?

The analogous concept in Racket and other programming languages is the expression,
which represents a specific piece of information that may be the result of calculation, e.g.

(beside (flip-vertical bloch) (circle 10 "solid" "green"))

whose evaluation requires four steps: What does the variable bloch refer to? What do
I get when I reflect that picture vertically? What does a solid green circle of radius 10
look like? What do I get when I combine those two images side by side?

We summarize this section in table 4.1.

4.9. REVIEW

Table 4.1: Analogy between English parts of speech and Racket

67

English | English ex- | Racket Racket What it
term amples term examples represents
bz
Proper Joe, Har- | Literal = 7 "hello" A single object,
noun vard, Rover, which you can
Chicago tell just by look-
ing at it
Pronoun | Him, her, it Variable, calendar, picture, | A single object,
para- imagel but needs con-
meter text to tell which
one
Improper| Person, Data type | image, number, string A category of
noun school, dog, objects
city
Verb Eat, kiss, | Function | flip-vertical, An action ap-
study mirror-image, plied to specific
counterchange, define | objects at a spe-
cific time
Noun “Jeff’s Expression| (flip-vertical book), | A single object,
phrase house”, “the (above bloch (circle | maybe the result
tallest boy in 10 "solid" "red")) of computation
the class”

4.9 Review of important words and concepts

Instead of typing in a bunch of very similar expressions ourselves, we can use the computer
to automate the process by defining a function. This requires identifying which parts of
the expressions are always the same (these become the function body), and which parts
are different (which are referred to inside the function body as parameters, and which are
replaced with specific arguments when the function is called).

A function definition can be divided into a function header (specifying the name of
the function and of its parameters) and a function body (an expression that uses the
parameters as though they were defined variables). Ordinarily, the function header is
written on one line and the function body on the next one (or more, if it’s long and
complicated). Racket doesn’t actually care whether you define a function on one line
or a hundred, nor how you indent the various lines, but human readers (including you!)
will find it much easier to read and understand your programs if you follow standard
conventions for line breaks and indentation. DrRacket helps with the indentation: every
time you hit RETURN/ENTER, it automatically indents the next line as appropriate.

You can see what DrRacket is doing “behind the scenes” by using the Stepper: it
shows how the arguments in a function call are matched up with the parameters in the
function’s definition, and how the function call is then replaced by the function body,
with parameters replaced by the corresponding arguments.

Before a program can be turned over to a teacher or a customer, it must be carefully
tested. If there are errors in a program, it’s much better for us to discover them than for
the teacher or customer to discover them, so try to come up with weird, malicious test

68 CHAPTER 4. WRITING FUNCTIONS

cases that are likely to uncover errors.

One way to write test cases in DrRacket is to put them in the Definitions pane, after
the definition itself, each test case followed by a description in quotation marks of what
the right answer should be.

Another way is a little more work to write, but easier to use in the long run: the
check-expect function, which compares the actual answer with what you said it should
be, and gives you a report on how many and which of your test cases failed.

The act of defining a function requires a new syntax rule, Rule 5:

(define (new-tdentifier identifier ...) expression)

The parameter names introduced in the function header can be used inside the function
body, but are not visible outside the definition.

Many of the new concepts introduced in the programming-language setting so far
correspond to familiar notions from English grammar: literals are proper nouns, variables
are pronouns, data types are improper nouns, functions are verbs, and expressions are
noun phrases.

4.10 Reference: Built-in functions for defining and
testing functions

The only new built-in functions introduced in this chapter are define (used to define a
function rather than a variable) and check-expect.

